The source of water used by Washington Co Rural Water 2 is purchased surface water. Our drinking water is supplied from another water system through a Consecutive Connection (CC). To find out more about our drinking water sources and additional chemical sampling results, please contact our office at the number provided above.

Contaminants that may be present in source water include:
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking Water Health Notes:
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Infants, young children, and pregnant women are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested. Flushing your tap for 30 seconds to 2 minutes before using your tap water will clear the line of any lead that may have leached into the water while the line was idle. Additional information is available from the Safe Drinking Water Hotline (800-426-4791) or the DHHS/Division of Public Health/Office of Drinking Water (402-471-2541).

The Washington Co Rural Water 2 is required to test for the following contaminants: Coliform Bacteria, Antimony, Arsenic, Asbestos, Barium, Beryllium, Cadmium, Chromium, Copper, Cyanide, Fluoride, Lead, Mercury, Nickel, Nitrate, Nitrite, Selenium, Sodium, Thallium, Alachlor, Atrazine, Benz(a)pyrene, Carbaryl, Carbon, Chlorine, Dalapon, Di(2-ethylhexyl)adipate, Dibromochloropropane, Dinosofe, Di(2-ethylhexyl)phthalate, Dichloro, 2,4-D, Endothall, Endrin, Ethylene dibromide, Glyphosate, Heptachlor, Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl (Vydate), Pentachlorophenol, Picloram, Polychlorinated biphenyls, Simazine, Toxaphene, Dioxin, Silvex, Benzene, Carbon Tetrachloride, o-Dichlorobenzene, Para-Dichlorobenzene, 1,2-Dichloroethane, 1,1-Dichloroethyle, Cis-1,2-Dichloroethyle, Trans-1,2-Dichloroethyle, Dichloromethane, 1,2-Dichloropropane, Ethylbenzene, Monochlorobenzene, 1,2,4-Trichlorobenzene, 1,1,1-Trichloroethane, 1,1,2-Trichloroethane, Trichloroethylene, Vinyl Chloride, Styrene, Tetrachloroethylene, Toluene, Xylenes (total), Gross Alpha (minus Uranium & Radium 226), Radium 226 plus Radium 228, Sulfate, Chloroform, Bromodichloromethane, Chlorodibromomethane, Bromoform, Chlorobenzene, 1,1,1-Trichloropropene, 1,1-Dichloroethane, 1,1,2,2-Tetrachlorethane, 1,2-Dichloropropane, Chloromethane, 1,2,3-Trichloropropane, 1,1,1,2-Tetrachloroethane, Chloroethane, 2,2-Dichloropropane, p-Chlorotoluene, p-Chlorotoluene, Bromobenzene, 1,3-Chloropropene, Aldrin, Butachlor, Carbaryl, Dicamba, Dieldrin, 3-Hydroxyacarbofuran, Methylnol, Melachlor, Metribuzin, Propachlor.

How to Read the Water Quality Data Table:
The EPA and State Drinking Water Program establish the safe drinking water regulations that limit the amount of contaminants allowed in drinking water. The table shows the concentrations of detected substances in comparison to the regulatory limits. Substances not detected are not included in the table. The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be older than one year. MCL (Maximum Contaminant Level) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG (Maximum Contaminant Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. AL (Action Level) – The concentration of a contaminant which, if exceeded three times, requires a treatment or other requirements which a water system must follow. MRLD (Maximum Residual Disinfectant Level) – The highest level of a disinfectant allowed in drinking water.

Source Water Assessment Availability:
The Nebraska Department of Environmental Quality (NDEQ) has completed the Source Water Assessment. Included in the assessment are a Wellhead Protection Area map, potential contaminant source inventory, vulnerability rating, and source water protection information. To view the Source Water Assessment or for more information please contact the person named above on this report or the NDEQ at (402) 471-6988 or go to www.deq.state.ne.us.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in drinking water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Sources of Drinking Water:
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Units in the Table:
- ND – Not detectable.
- ppm (parts per million) = mg/L (milligrams per liter) – One ppm or one mg/L corresponds to 1 gallon of water in 1,000,000 gallons of water.
- ppb (parts per billion) – One ppb corresponds to 1 gallon of water in 1,000,000,000 gallons of water.
- µg/L (micrograms per liter) – Measurement of radioactivity.
- RAA (Running Annual Average) – An ongoing annual average calculation of data from the most recent four quarters.
- 90th Percentile – Represents the highest value found out of 90% of the samples taken in a representative group. If the 90th percentile is greater than the action level, it will trigger a treatment or other requirements that a water system must follow.
- TT (Treatment Technique) – A required process intended to reduce the level of a contaminant in drinking water.

The Washington Co Rural Water 2 Annual Water Quality Report For January 1 to December 31, 2015

For more information regarding this report, contact:

MARTY THIEMAN
402-669-4826

This report is intended to provide you with important information about your drinking water and the efforts made by the Washington Co Rural Water 2 water system to provide safe drinking water.
TEST RESULTS

Microbiological

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Monitoring Period</th>
<th>90th Percentile</th>
<th>Range</th>
<th>Unit</th>
<th>AL</th>
<th>Sites Over AL</th>
<th>Likely Source Of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPPER, FREE</td>
<td>2013 - 2015</td>
<td>0.187</td>
<td>0.0142 - 0.435</td>
<td>ppm</td>
<td>1.3</td>
<td>0</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing.</td>
</tr>
</tbody>
</table>

Disinfection Byproducts

<table>
<thead>
<tr>
<th>Disinfection Byproducts</th>
<th>Monitoring Period</th>
<th>Highest RAA</th>
<th>Range</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source Of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL HALOACETIC ACIDS (HAAS)</td>
<td>1/1/2015 - 12/31/2016</td>
<td>27.1</td>
<td>20.9 - 37.5</td>
<td>ppb</td>
<td>60</td>
<td>0</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>TTHM</td>
<td>4/1/2014 - 3/31/2015</td>
<td>48.55</td>
<td>38.3 - 63.5</td>
<td>ppb</td>
<td>80</td>
<td>0</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Testing Results

No Detected Results were Found in the Calendar Year of 2015

Lead and Copper Monitoring

- **COPPER, FREE**: 2013 - 2015, 0.187 ppm (range 0.0142 - 0.435 ppm), 1 site(s) over AL likely due to erosional processes, leaching from wood preservatives, and corrosion of household plumbing.

Disinfection Byproducts Monitoring

- **TOTAL HALOACETIC ACIDS (HAAS)**: 1/1/2015 - 12/31/2016, 27.1 RAA (range 20.9 - 37.5 ppb), 60 sites over AL, likely due to by-products of drinking water disinfection.
- **TTHM**: 4/1/2014 - 3/31/2015, 48.55 RAA (range 38.3 - 63.5 ppb), 80 sites over AL, likely due to by-products of drinking water disinfection.

Violations Present

No Violations Occurred in the Calendar Year of 2015

Analyte Collection

Some or all of our drinking water is supplied from another water system. The table below lists all of the drinking water contaminants, which were detected during the 2015 calendar year from the water systems that we purchase drinking water from.

<table>
<thead>
<tr>
<th>Regulated Contaminants</th>
<th>Collection Date</th>
<th>Water System</th>
<th>Highest Value</th>
<th>Range</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source Of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRAZINE</td>
<td>07/13/2015</td>
<td>City Of Blair</td>
<td>0.129</td>
<td>0.129 ppb</td>
<td>3</td>
<td>3</td>
<td>Runoff from herbicide used on row crops</td>
<td></td>
</tr>
<tr>
<td>BARIUM</td>
<td>07/15/2013</td>
<td>City Of Blair</td>
<td>0.0196</td>
<td>0.0196 ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge from drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>07/15/2013</td>
<td>City Of Blair</td>
<td>1.58</td>
<td>1.58 ppb</td>
<td>100</td>
<td>100</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>07/15/2013</td>
<td>City Of Blair</td>
<td>0.953</td>
<td>0.953 ppm</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; Fertilizer discharge.</td>
<td></td>
</tr>
<tr>
<td>NITRATE-NITRITE</td>
<td>01/20/2015</td>
<td>City Of Blair</td>
<td>0.591</td>
<td>0.591 ppm</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

Additional Required Health Effects Language:

Unregulated Water Quality Data

- **ALKALINITY, CARBONATE**: 12/14/2015, City Of Blair, 2.16 mg/L, 178 - 216 mg/L, mg/L, Secondary MCL 0.1
- **CARBON, TOTAL**: 06/02/2015, City Of Blair, 4.5 ppm, 2.2 - 4.5 ppm, ppm
- **METOLACHLOR**: 07/13/2015, City Of Blair, 0.116 mm, 0.116 mm, ppm
- **NICKEL**: 07/08/2013, City Of Blair, 0.00161 mg/L, 0.00161 mg/L, 0.1
- **SULFATE**: 07/09/2013, City Of Blair, 232 mg/L, 232 mg/L, 250

Additional Required Health Effects Language: